Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
bioRxiv ; 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38352526

Bacteriophages, the viruses of bacteria, are proposed to drive bacterial population dynamics, yet direct evidence of their impact on natural populations is limited. Here we identified viral sequences in a metapopulation of wild plant-associated Pseudomonas spp. genomes. We discovered that the most abundant viral cluster does not encode an intact phage but instead encodes a tailocin - a phage-derived element that bacteria use to kill competitors for interbacterial warfare. Each pathogenic Pseudomonas sp. strain carries one of a few distinct tailocin variants, which target variable polysaccharides in the outer membrane of co-occurring pathogenic strains. Analysis of historic herbarium samples from the last 170 years revealed that the same tailocin and receptor variants have persisted in the Pseudomonas populations for at least two centuries, suggesting the continued use of a defined set of tailocin haplotypes and receptors. These results indicate that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control. One-Sentence Summary: Bacterial pathogens in a host-associated metapopulation use a repurposed prophage to kill their competitors.

2.
Redox Biol ; 67: 102932, 2023 11.
Article En | MEDLINE | ID: mdl-37883842

The NDUFS4 knockout (KO) mouse phenotype resembles the human Complex I deficiency Leigh Syndrome. The irreversible succination of protein thiols by fumarate is increased in select regions of the NDUFS4 KO brain affected by neurodegeneration. We report that dihydrolipoyllysine-residue succinyltransferase (DLST), a component of the α-ketoglutarate dehydrogenase complex (KGDHC) of the tricarboxylic acid (TCA) cycle, is succinated in the affected regions of the NDUFS4 KO brain. Succination of DLST reduced KGDHC activity in the brainstem (BS) and olfactory bulb (OB) of KO mice. The defective production of KGDHC derived succinyl-CoA resulted in decreased mitochondrial substrate level phosphorylation (SLP), further aggravating the existing oxidative phosphorylation (OXPHOS) ATP deficit. Protein succinylation, an acylation modification that requires succinyl-CoA, was reduced in the KO mice. Modeling succination of a cysteine in the spatial vicinity of the DLST active site or introduction of succinomimetic mutations recapitulates these metabolic deficits. Our data demonstrate that the biochemical deficit extends beyond impaired Complex I assembly and OXPHOS deficiency, functionally impairing select components of the TCA cycle to drive metabolic perturbations in affected neurons.


Citric Acid Cycle , Ketoglutarate Dehydrogenase Complex , Mice , Animals , Humans , Ketoglutarate Dehydrogenase Complex/genetics , Ketoglutarate Dehydrogenase Complex/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mice, Knockout , Oxidative Phosphorylation , Adenosine Triphosphate/metabolism
3.
Nat Commun ; 14(1): 4550, 2023 07 28.
Article En | MEDLINE | ID: mdl-37507364

Protein-S-glutathionylation is a post-translational modification involving the conjugation of glutathione to protein thiols, which can modulate the activity and structure of key cellular proteins. Glutaredoxins (GLRX) are oxidoreductases that regulate this process by performing deglutathionylation. However, GLRX has five cysteines that are potentially vulnerable to oxidative modification, which is associated with GLRX aggregation and loss of activity. To date, GLRX cysteines that are oxidatively modified and their relative susceptibilities remain unknown. We utilized molecular modeling approaches, activity assays using recombinant GLRX, coupled with site-directed mutagenesis of each cysteine both individually and in combination to address the oxidizibility of GLRX cysteines. These approaches reveal that C8 and C83 are targets for S-glutathionylation and oxidation by hydrogen peroxide in vitro. In silico modeling and experimental validation confirm a prominent role of C8 for dimer formation and aggregation. Lastly, combinatorial mutation of C8, C26, and C83 results in increased activity of GLRX and resistance to oxidative inactivation and aggregation. Results from these integrated computational and experimental studies provide insights into the relative oxidizability of GLRX's cysteines and have implications for the use of GLRX as a therapeutic in settings of dysregulated protein glutathionylation.


Cysteine , Glutaredoxins , Animals , Cysteine/metabolism , Glutaredoxins/genetics , Glutaredoxins/metabolism , Glutathione/metabolism , Mammals/metabolism , Oxidation-Reduction , Proteins/metabolism
4.
Mol Cancer Res ; 21(7): 675-690, 2023 07 05.
Article En | MEDLINE | ID: mdl-36961392

Protein homeostasis (proteostasis) regulates tumor growth and proliferation when cells are exposed to proteotoxic stress, such as during treatment with certain chemotherapeutics. Consequently, cancer cells depend to a greater extent on stress signaling, and require the integrated stress response (ISR), amino acid metabolism, and efficient protein folding and degradation pathways to survive. To define how these interconnected pathways are wired when cancer cells are challenged with proteotoxic stress, we investigated how amino acid abundance influences cell survival when Hsp70, a master proteostasis regulator, is inhibited. We previously demonstrated that cancer cells exposed to a specific Hsp70 inhibitor induce the ISR via the action of two sensors, GCN2 and PERK, in stress-resistant and sensitive cells, respectively. In resistant cells, the induction of GCN2 and autophagy supported resistant cell survival, yet the mechanism by which these events were induced remained unclear. We now report that amino acid availability reconfigures the proteostasis network. Amino acid supplementation, and in particular arginine addition, triggered cancer cell death by blocking autophagy. Consistent with the importance of amino acid availability, which when limited activates GCN2, resistant cancer cells succumbed when challenged with a potentiator for another amino acid sensor, mTORC1, in conjunction with Hsp70 inhibition. IMPLICATIONS: These data position amino acid abundance, GCN2, mTORC1, and autophagy as integrated therapeutic targets whose coordinated modulation regulates the survival of proteotoxic-resistant breast cancer cells.


Breast Neoplasms , Proteostasis , Humans , Female , Proteotoxic Stress , Cell Survival , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Amino Acids/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism
5.
Redox Biol ; 47: 102160, 2021 11.
Article En | MEDLINE | ID: mdl-34624602

BACKGROUND: Interleukin-1-dependent increases in glycolysis promote allergic airways disease in mice and disruption of pyruvate kinase M2 (PKM2) activity is critical herein. Glutathione-S-transferase P (GSTP) has been implicated in asthma pathogenesis and regulates the oxidation state of proteins via S-glutathionylation. We addressed whether GSTP-dependent S-glutathionylation promotes allergic airways disease by promoting glycolytic reprogramming and whether it involves the disruption of PKM2. METHODS: We used house dust mite (HDM) or interleukin-1ß in C57BL6/NJ WT or mice that lack GSTP. Airway basal cells were stimulated with interleukin-1ß and the selective GSTP inhibitor, TLK199. GSTP and PKM2 were evaluated in sputum samples of asthmatics and healthy controls and incorporated analysis of the U-BIOPRED severe asthma cohort database. RESULTS: Ablation of Gstp decreased total S-glutathionylation and attenuated HDM-induced allergic airways disease and interleukin-1ß-mediated inflammation. Gstp deletion or inhibition by TLK199 decreased the interleukin-1ß-stimulated secretion of pro-inflammatory mediators and lactate by epithelial cells. 13C-glucose metabolomics showed decreased glycolysis flux at the pyruvate kinase step in response to TLK199. GSTP and PKM2 levels were increased in BAL of HDM-exposed mice as well as in sputum of asthmatics compared to controls. Sputum proteomics and transcriptomics revealed strong correlations between GSTP, PKM2, and the glycolysis pathway in asthma. CONCLUSIONS: GSTP contributes to the pathogenesis of allergic airways disease in association with enhanced glycolysis and oxidative disruption of PKM2. Our findings also suggest a PKM2-GSTP-glycolysis signature in asthma that is associated with severe disease.


Asthma , Carrier Proteins/metabolism , Glutathione S-Transferase pi/metabolism , Membrane Proteins/metabolism , Pyruvate Kinase , Thyroid Hormones/metabolism , Animals , Carrier Proteins/genetics , Glutathione/metabolism , Glutathione S-Transferase pi/genetics , Glutathione Transferase , Glycolysis , Humans , Lung/metabolism , Membrane Proteins/genetics , Mice , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Thyroid Hormones/genetics , Thyroid Hormone-Binding Proteins
6.
J Biol Chem ; 296: 100665, 2021.
Article En | MEDLINE | ID: mdl-33895140

Peroxiredoxins (PRDXs) catalyze the reduction of hydrogen peroxide (H2O2). PRDX4 is the only peroxiredoxin located within the endoplasmic reticulum (ER) and is the most highly expressed H2O2 scavenger in the ER. PRDX4 has emerged as an important player in numerous diseases, such as fibrosis and metabolic syndromes, and its overoxidation is a potential indicator of ER redox stress. It is unclear how overoxidation of PRDX4 governs its oligomerization state and interacting partners. Herein, we addressed these questions via nonreducing Western blots, mass spectrometry, and site-directed mutagenesis. We report that the oxidation of PRDX4 in lung epithelial cells treated with tertbutyl hydroperoxide caused a shift of PRDX4 from monomer/dimer to high molecular weight (HMW) species, which contain PRDX4 modified with sulfonic acid residues (PRDX4-SO3), as well as of a complement of ER-associated proteins, including protein disulfide isomerases important in protein folding, thioredoxin domain-containing protein 5, and heat shock protein A5, a key regulator of the ER stress response. Mutation of any of the four cysteines in PRDX4 altered the HMW species in response to tertbutyl hydroperoxide as well as the secretion of PRDX4. We also demonstrate that the expression of ER oxidoreductase 1 alpha, which generates H2O2 in the ER, increased PRDX4 HMW formation and secretion. These results suggest a link between SO3 modification in the formation of HMW PRDX4 complexes in cells, whereas the association of key regulators of ER homeostasis with HMW oxidized PRDX4 point to a putative role of PRDX4 in regulating ER stress responses.


Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Epithelial Cells/metabolism , Lung/metabolism , Peroxiredoxins/chemistry , Peroxiredoxins/metabolism , Protein Folding , Animals , Mice , Protein Interaction Domains and Motifs , Protein Multimerization
7.
FASEB J ; 35(5): e21525, 2021 05.
Article En | MEDLINE | ID: mdl-33817836

Glycolysis is a well-known process by which metabolically active cells, such as tumor or immune cells meet their high metabolic demands. Previously, our laboratory has demonstrated that in airway epithelial cells, the pleiotropic cytokine, interleukin-1 beta (IL1B) induces glycolysis and that this contributes to allergic airway inflammation and remodeling. Activation of glycolysis is known to increase NADPH reducing equivalents generated from the pentose phosphate pathway, linking metabolic reprogramming with redox homeostasis. In addition, numerous glycolytic enzymes are known to be redox regulated. However, whether and how redox chemistry regulates metabolic reprogramming more generally remains unclear. In this study, we employed a multi-omics approach in primary mouse airway basal cells to evaluate the role of protein redox biochemistry, specifically protein glutathionylation, in mediating metabolic reprogramming. Our findings demonstrate that IL1B induces glutathionylation of multiple proteins involved in metabolic regulation, notably in the glycolysis pathway. Cells lacking Glutaredoxin-1 (Glrx), the enzyme responsible for reversing glutathionylation, show modulation of multiple metabolic pathways including an enhanced IL1B-induced glycolytic response. This was accompanied by increased secretion of thymic stromal lymphopoietin (TSLP), a cytokine important in asthma pathogenesis. Targeted inhibition of glycolysis prevented TSLP release, confirming the functional relevance of enhanced glycolysis in cells stimulated with IL1B. Collectively, data herein point to an intriguing link between glutathionylation chemistry and glycolytic reprogramming in epithelial cells and suggest that glutathionylation chemistry may represent a therapeutic target in pulmonary pathologies with perturbations in the glycolysis pathway.


Cellular Reprogramming , Glutaredoxins/physiology , Glutathione/metabolism , Glycolysis , Inflammation/immunology , Interleukin-1beta/pharmacology , Lung/immunology , Animals , Cytokines/metabolism , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Lung/cytology , Lung/drug effects , Lung/metabolism , Metabolome , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction
8.
Am J Respir Cell Mol Biol ; 64(6): 709-721, 2021 06.
Article En | MEDLINE | ID: mdl-33662229

Obesity is a risk factor for the development of asthma and represents a difficult-to-treat disease phenotype. Aerobic glycolysis is emerging as a key feature of asthma, and changes in glucose metabolism are linked to leukocyte activation and adaptation to oxidative stress. Dysregulation of PKM2 (pyruvate kinase M2), the enzyme that catalyzes the last step of glycolysis, contributes to house dust mite (HDM)-induced airway inflammation and remodeling in lean mice. It remains unclear whether glycolytic reprogramming and dysregulation of PKM2 also contribute to obese asthma. The goal of the present study was to elucidate the functional role of PKM2 in a murine model of obese allergic asthma. We evaluated the small molecule activator of PKM2, TEPP46, and assessed the role of PKM2 using conditional ablation of the Pkm2 allele from airway epithelial cells. In obese C57BL/6NJ mice, parameters indicative of glycolytic reprogramming remained unchanged in the absence of stimulation with HDM. Obese mice that were subjected to HDM showed evidence of glycolytic reprogramming, and treatment with TEPP46 diminished airway inflammation, whereas parameters of airway remodeling were unaffected. Epithelial ablation of Pkm2 decreased central airway resistance in both lean and obese allergic mice in addition to decreasing inflammatory cytokines in the lung tissue. Lastly, we highlight a novel role for PKM2 in the regulation of glutathione-dependent protein oxidation in the lung tissue of obese allergic mice via a putative IFN-γ-glutaredoxin1 pathway. Overall, targeting metabolism and protein oxidation may be a novel treatment strategy for obese allergic asthma.


Asthma/enzymology , Asthma/pathology , Hypersensitivity/enzymology , Hypersensitivity/pathology , Inflammation/enzymology , Inflammation/pathology , Pyruvate Kinase/metabolism , Animals , Asthma/complications , Asthma/parasitology , Bronchial Hyperreactivity/complications , Diet, High-Fat , Disease Models, Animal , Enzyme Activation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Glutathione/metabolism , Glycolysis , Homeostasis/drug effects , Hypersensitivity/complications , Hypersensitivity/parasitology , Inflammation Mediators/metabolism , Lung/enzymology , Lung/pathology , Mice, Inbred C57BL , Mice, Obese , Models, Biological , Pyridazines/administration & dosage , Pyridazines/pharmacology , Pyroglyphidae , Pyrroles/administration & dosage , Pyrroles/pharmacology
9.
Front Oncol ; 11: 810023, 2021.
Article En | MEDLINE | ID: mdl-35223458

BACKGROUND: Cyclin-dependent kinases (CDK) 4 and 6 regulate G1 to S cell cycle progression and are often altered in cancers. Abemaciclib is a selective inhibitor of CDK4 and CDK6 approved for administration on a continuous dosing schedule as monotherapy or as combination therapy with an aromatase inhibitor or fulvestrant in patients with advanced or metastatic breast cancer. This Phase 1b study evaluated the safety and tolerability, pharmacokinetics, and antitumor activity of abemaciclib in combination with endocrine therapy for metastatic breast cancer (MBC), including aromatase inhibitors (letrozole, anastrozole, or exemestane) or tamoxifen. PATIENTS AND METHODS: Women ≥18 years old with hormone receptor positive (HR+), human epidermal growth factor receptor 2 negative (HER2-) MBC were eligible for enrollment. Eligibility included measurable disease or non-measurable but evaluable bone disease by Response Evaluation Criteria in Solid Tumours (RECIST) v1.1, Eastern Cooperative Oncology Group performance status 0-1, and no prior chemotherapy for metastatic disease. Adverse events were graded by the National Cancer Institute Common Terminology Criteria for Adverse Events v4.0 and tumor response were assessed by RECIST v1.1. RESULTS: Sixty-seven patients were enrolled and received abemaciclib 200 mg every 12 hours in combination with letrozole (Part A, n=20), anastrozole (Part B, n=16), tamoxifen (Part C, n=16), or exemestane (Part D, n=15). The most common treatment-emergent adverse events (TEAE) were diarrhea, fatigue, nausea, and abdominal pain. Grade 4 TEAEs were reported in five patients (one each with hyperglycemia, hypertension, neutropenia, procedural hemorrhage, and sepsis). There was no effect of abemaciclib or endocrine therapy on the pharmacokinetics of any combination study drug. Across all treated patients, the median progression-free survival was 25.4 months (95% confidence interval: 18.0, 35.8). The objective response rate was 38.9% in 36 patients with measurable disease. CONCLUSIONS: Abemaciclib in combination with multiple endocrine therapy options exhibited manageable safety and promising antitumor activity in patients with HR+, HER2- MBC. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/, identifier NCT02057133.

10.
J Immunol ; 204(4): 763-774, 2020 02 15.
Article En | MEDLINE | ID: mdl-31924651

Asthma is a chronic disorder characterized by inflammation, mucus metaplasia, airway remodeling, and hyperresponsiveness. We recently showed that IL-1-induced glycolytic reprogramming contributes to allergic airway disease using a murine house dust mite model. Moreover, levels of pyruvate kinase M2 (PKM2) were increased in this model as well as in nasal epithelial cells from asthmatics as compared with healthy controls. Although the tetramer form of PKM2 converts phosphoenolpyruvate to pyruvate, the dimeric form of PKM2 has alternative, nonglycolysis functions as a transcriptional coactivator to enhance the transcription of several proinflammatory cytokines. In the current study, we examined the impact of PKM2 on the pathogenesis of house dust mite-induced allergic airways disease in C57BL/6NJ mice. We report, in this study, that activation of PKM2, using the small molecule activator, TEPP46, augmented PKM activity in lung tissues and attenuated airway eosinophils, mucus metaplasia, and subepithelial collagen. TEPP46 attenuated IL-1ß-mediated airway inflammation and expression of proinflammatory mediators. Exposure to TEPP46 strongly decreased the IL-1ß-mediated increases in thymic stromal lymphopoietin (TSLP) and GM-CSF in primary tracheal epithelial cells isolated from C57BL/6NJ mice. We also demonstrate that IL-1ß-mediated increases in nuclear phospho-STAT3 were decreased by TEPP46. Finally, STAT3 inhibition attenuated the IL-1ß-induced release of TSLP and GM-CSF, suggesting that the ability of PKM2 to phosphorylate STAT3 contributes to its proinflammatory function. Collectively, these results demonstrate that the glycolysis-inactive form of PKM2 plays a crucial role in the pathogenesis of allergic airways disease by increasing IL-1ß-induced proinflammatory signaling, in part, through phosphorylation of STAT3.


Asthma/immunology , Hypersensitivity/immunology , Pneumonia/immunology , Pyruvate Kinase/immunology , Signal Transduction/immunology , Airway Remodeling/physiology , Animals , Asthma/metabolism , Female , Hypersensitivity/metabolism , Male , Mice , Mice, Inbred C57BL , Pneumonia/metabolism , Pyroglyphidae/immunology , Pyruvate Kinase/metabolism
11.
Free Radic Biol Med ; 148: 70-82, 2020 02 20.
Article En | MEDLINE | ID: mdl-31883977

C/EBP homologous protein (CHOP) is a transcription factor that is elevated in adipose tissue across many models of diabetes and metabolic stress. Although increased CHOP levels are associated with the terminal response to endoplasmic reticulum stress and apoptosis, there is no evidence for CHOP mediated apoptosis in the adipose tissue during diabetes. CHOP protein levels increase in parallel with protein succination, a fumarate derived cysteine modification, in the adipocyte during metabolic stress. We investigated the factors contributing to sustained CHOP proteins levels in the adipocyte, with an emphasis on the regulation of CHOP protein turnover by metabolite-driven modification of Keap1 cysteines. CHOP protein stability was investigated in conditions of nutrient stress due to high glucose or elevated fumarate (fumarase knockdown model); where cysteine succination is specifically elevated. CHOP protein turnover is significantly reduced in models of elevated glucose and fumarate with a ~30% increase in CHOP stability (p > 0.01), in part due to decreased CHOP phosphorylation. Sustained CHOP levels occur in parallel with elevated heme-oxygenase-1, a production of increased Nrf2 transcriptional activity and Keap1 modification. While Keap1 is directly succinated in the presence of excess fumarate derived from genetic knockdown of fumarase (fumarate levels are elevated >20-fold), it is the oxidative modification of Keap1 that predominates in adipocytes matured in high glucose (fumarate increases 4-5 fold). Elevated fumarate indirectly regulates CHOP stability through the induction of oxidative stress. The antioxidant N-acetylcysteine (NAC) reduces fumarate levels, protein succination and CHOP levels in adipocytes matured in high glucose. Elevated CHOP does not contribute elevated apoptosis in adipocytes, but plays a redox-dependent role in decreasing the adipocyte secretion of interleukin-13, an anti-inflammatory chemokine. NAC treatment restores adipocyte IL-13 secretion, confirming the redox-dependent regulation of a potent anti-inflammatory eotaxin. This study demonstrates that physiological increases in the metabolite fumarate during high glucose exposure contributes to the presence of oxidative stress and sustained CHOP levels in the adipocyte during diabetes. The results reveal a novel metabolic link between mitochondrial metabolic stress and reduced anti-inflammatory adipocyte signaling as a consequence of reduced CHOP protein turnover.


Fumarates , NF-E2-Related Factor 2 , Adipocytes/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Kelch-Like ECH-Associated Protein 1/genetics , Oxidative Stress , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
12.
Am J Physiol Cell Physiol ; 318(2): C304-C327, 2020 02 01.
Article En | MEDLINE | ID: mdl-31693398

Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.


Glutaredoxins/metabolism , Glutathione/metabolism , Lung Diseases/metabolism , Lung/metabolism , Amino Acid Sequence , Animals , Antioxidants/metabolism , Cysteine/metabolism , Disulfides/metabolism , Humans , Mice , Mice, Inbred BALB C , Oxidation-Reduction , Oxidative Stress/physiology
13.
Mol Cell Proteomics ; 18(3): 504-519, 2019 03.
Article En | MEDLINE | ID: mdl-30587509

The fumarate ester dimethyl fumarate (DMF) has been introduced recently as a treatment for relapsing remitting multiple sclerosis (RRMS), a chronic inflammatory condition that results in neuronal demyelination and axonal loss. DMF is known to act by depleting intracellular glutathione and modifying thiols on Keap1 protein, resulting in the stabilization of the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. We have previously shown that DMF reacts with a wide range of protein thiols, suggesting that the complete mechanisms of action of DMF are unknown. Here, we investigated other intracellular thiol residues that may also be irreversibly modified by DMF in neurons and astrocytes. Using mass spectrometry, we identified 24 novel proteins that were modified by DMF in neurons and astrocytes, including cofilin-1, tubulin and collapsin response mediator protein 2 (CRMP2). Using an in vitro functional assay, we demonstrated that DMF-modified cofilin-1 loses its activity and generates less monomeric actin, potentially inhibiting its cytoskeletal remodeling activity, which could be beneficial in the modulation of myelination during RRMS. DMF modification of tubulin did not significantly impact axonal lysosomal trafficking. We found that the oxygen consumption rate of N1E-115 neurons and the levels of proteins related to mitochondrial energy production were only slightly affected by the highest doses of DMF, confirming that DMF treatment does not impair cellular respiratory function. In summary, our work provides new insights into the mechanisms supporting the neuroprotective and remyelination benefits associated with DMF treatment in addition to the antioxidant response by Nrf2.


Astrocytes/metabolism , Cysteine/drug effects , Dimethyl Fumarate/pharmacology , NF-E2-Related Factor 2/metabolism , Neurons/metabolism , 3T3-L1 Cells , Animals , Astrocytes/cytology , Astrocytes/drug effects , Cells, Cultured , Cofilin 1/chemistry , Cofilin 1/metabolism , Intercellular Signaling Peptides and Proteins , Mass Spectrometry , Mice , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/drug effects , Rats , Tubulin/chemistry , Tubulin/metabolism
14.
Antioxid Redox Signal ; 27(16): 1281-1296, 2017 Dec 01.
Article En | MEDLINE | ID: mdl-28376661

AIMS: Protein succination by fumarate increases in the adipose tissue of diabetic mice and in adipocytes matured in high glucose as a result of glucotoxicity-driven mitochondrial stress. The endoplasmic reticulum (ER) oxidoreductase protein disulfide isomerase (PDI) is succinated in adipocytes that are matured in high glucose, and in this study we investigated whether succination would alter PDI oxidoreductase activity, directly linking mitochondrial stress and ER stress. RESULTS: Protein succination and the ER stress marker C/EBP homologous protein (CHOP) were diminished after pharmaceutical targeting of mitochondrial stress with the chemical uncoupler niclosamide in adipocytes matured in high-glucose concentrations. PDI was succinated by fumarate on both CXXC-containing active sites, contributing to reduced enzymatic activity. Succinated PDI decreased reductase activity in adipocytes matured in high glucose, and in db/db epididymal adipose tissue, in association with increased levels of CHOP. PDI succination was increased in fumarase knockdown adipocytes, leading to reduced PDI oxidoreductase activity, increased CHOP levels, and pro-inflammatory cytokine secretion, confirming the specific role of elevated fumarate levels in contributing to ER stress. In addition, PDI succination and ER stress were decreased, and PDI reductase activity was restored when exposure to chronic high glucose was limited, highlighting the importance of calorie restriction in the improvement of adipocyte metabolic function. INNOVATION: These experiments identify PDI succination as a novel biochemical mechanism linking altered mitochondrial metabolism to ER stress in the adipocyte during diabetes. CONCLUSION: The current study demonstrates that early biochemical changes in mitochondrial metabolism have important implications for the development of adipocyte stress. Antioxid. Redox Signal. 27, 1281-1296.


Adipocytes/metabolism , Diabetes Mellitus, Experimental/metabolism , Fumarates/metabolism , Mitochondria/metabolism , Protein Disulfide-Isomerases/metabolism , 3T3-L1 Cells , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Glucose/pharmacology , Mice , Niclosamide/pharmacology , Oxidative Stress , Protein Disulfide-Isomerases/chemistry , Transcription Factor CHOP/metabolism
15.
Mol Cell Proteomics ; 15(2): 445-61, 2016 Feb.
Article En | MEDLINE | ID: mdl-26450614

Elevated fumarate concentrations as a result of Krebs cycle inhibition lead to increases in protein succination, an irreversible post-translational modification that occurs when fumarate reacts with cysteine residues to generate S-(2-succino)cysteine (2SC). Metabolic events that reduce NADH re-oxidation can block Krebs cycle activity; therefore we hypothesized that oxidative phosphorylation deficiencies, such as those observed in some mitochondrial diseases, would also lead to increased protein succination. Using the Ndufs4 knockout (Ndufs4 KO) mouse, a model of Leigh syndrome, we demonstrate for the first time that protein succination is increased in the brainstem (BS), particularly in the vestibular nucleus. Importantly, the brainstem is the most affected region exhibiting neurodegeneration and astrocyte and microglial proliferation, and these mice typically die of respiratory failure attributed to vestibular nucleus pathology. In contrast, no increases in protein succination were observed in the skeletal muscle, corresponding with the lack of muscle pathology observed in this model. 2D SDS-PAGE followed by immunoblotting for succinated proteins and MS/MS analysis of BS proteins allowed us to identify the voltage-dependent anion channels 1 and 2 as specific targets of succination in the Ndufs4 knockout. Using targeted mass spectrometry, Cys(77) and Cys(48) were identified as endogenous sites of succination in voltage-dependent anion channels 2. Given the important role of voltage-dependent anion channels isoforms in the exchange of ADP/ATP between the cytosol and the mitochondria, and the already decreased capacity for ATP synthesis in the Ndufs4 KO mice, we propose that the increased protein succination observed in the BS of these animals would further decrease the already compromised mitochondrial function. These data suggest that fumarate is a novel biochemical link that may contribute to the progression of the neuropathology in this mitochondrial disease model.


Electron Transport Complex I/genetics , Leigh Disease/genetics , Proteomics , Succinates/metabolism , Animals , Brain Stem/metabolism , Brain Stem/pathology , Citric Acid Cycle , Cysteine/metabolism , Disease Models, Animal , Electron Transport Complex I/metabolism , Fumarates/metabolism , Humans , Leigh Disease/metabolism , Leigh Disease/pathology , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondria/pathology , Protein Processing, Post-Translational/genetics , Tandem Mass Spectrometry
16.
Biochem J ; 462(2): 231-45, 2014 Sep 01.
Article En | MEDLINE | ID: mdl-24909641

Protein succination is a stable post-translational modification that occurs when fumarate reacts with cysteine residues to generate 2SC [S-(2-succino)cysteine]. We demonstrate that both α- and ß-tubulin are increasingly modified by succination in 3T3-L1 adipocytes and in the adipose tissue of db/db mice. Incubation of purified tubulin from porcine brain with fumarate (50 mM) or the pharmacological compound DMF (dimethylfumarate, 500 µM) inhibited polymerization up to 35% and 59% respectively. Using MS we identified Cys347α, Cys376α, Cys12ß and Cys303ß as sites of succination in porcine brain tubulin and the relative abundance of succination at these cysteine residues increased in association with fumarate concentration. The increase in succination after incubation with fumarate altered tubulin recognition by an anti-α-tubulin antibody. Succinated tubulin in adipocytes cultured in high glucose compared with normal glucose also had reduced reactivity with the anti-α-tubulin antibody; suggesting that succination may interfere with tubulin-protein interactions. DMF reacted rapidly with 11 of the 20 cysteine residues in the αß-tubulin dimer, decreased the number of free thiols and inhibited the proliferation of 3T3-L1 fibroblasts. Our data suggest that inhibition of tubulin polymerization is an important undocumented mechanism of action of DMF. Taken together, our results demonstrate that succination is a novel post-translational modification of tubulin and suggest that extensive modification by fumarate, either physiologically or pharmacologically, may alter microtubule dynamics.


Succinic Acid/metabolism , Tubulin/metabolism , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Brain/metabolism , Cattle , Cell Proliferation , Culture Media , Diabetes Mellitus, Type 2/metabolism , Dimethyl Fumarate , Fibroblasts/cytology , Fibroblasts/drug effects , Fumarates/pharmacology , Glucose/metabolism , Mice , Polymerization
17.
Amino Acids ; 45(5): 1243-7, 2013 Nov.
Article En | MEDLINE | ID: mdl-23892396

Protein succination, the non-enzymatic modification of cysteine residues by fumarate, is distinguishable from succinylation, an enzymatic reaction forming an amide bond between lysine residues and succinyl-CoA. Treatment of adipocytes with 30 mM glucose significantly increases protein succination with only a small change in succinylation. Protein succination may be significantly increased intracellularly after treatment with fumaric acid esters, however, the ester must be removed by saponification to permit 2SC-antibody detection of the fumarate adduct.


Adipocytes/metabolism , Citric Acid Cycle , Fumarates/pharmacology , Proteins/metabolism , 3T3 Cells , Adipocytes/drug effects , Animals , Citric Acid Cycle/drug effects , Cysteine/metabolism , Glucose/metabolism , Mice , Protein Processing, Post-Translational/drug effects
...